The traveling-wave approach to asexual evolution: Muller's ratchet and speed of adaptation.
نویسندگان
چکیده
We use traveling-wave theory to derive expressions for the rate of accumulation of deleterious mutations under Muller's ratchet and the speed of adaptation under positive selection in asexual populations. Traveling-wave theory is a semi-deterministic description of an evolving population, where the bulk of the population is modeled using deterministic equations, but the class of the highest-fitness genotypes, whose evolution over time determines loss or gain of fitness in the population, is given proper stochastic treatment. We derive improved methods to model the highest-fitness class (the stochastic edge) for both Muller's ratchet and adaptive evolution, and calculate analytic correction terms that compensate for inaccuracies which arise when treating discrete fitness classes as a continuum. We show that traveling-wave theory makes excellent predictions for the rate of mutation accumulation in the case of Muller's ratchet, and makes good predictions for the speed of adaptation in a very broad parameter range. We predict the adaptation rate to grow logarithmically in the population size until the population size is extremely large.
منابع مشابه
Muller's ratchet in random graphs and scale-free networks.
Muller's ratchet is an evolutionary process that has been implicated in the extinction of asexual species, the evolution of mitochondria, the degeneration of the Y chromosome, the evolution of sex and recombination and the evolution of microbes. Here we study the speed of Muller's ratchet in a population subdivided into many small subpopulations connected by migration, and distributed on a netw...
متن کاملThe solitary wave of asexual evolution.
Using a previously undescribed approach, we develop an analytic model that predicts whether an asexual population accumulates advantageous or deleterious mutations over time and the rate at which either process occurs. The model considers a large number of linked identical loci, or nucleotide sites; assumes that the selection coefficient per site is much less than the mutation rate per genome; ...
متن کاملMuller's ratchet and the degeneration of Y chromosomes: a simulation study.
A typical pattern in sex chromosome evolution is that Y chromosomes are small and have lost many of their genes. One mechanism that might explain the degeneration of Y chromosomes is Muller's ratchet, the perpetual stochastic loss of linkage groups carrying the fewest number of deleterious mutations. This process has been investigated theoretically mainly for asexual, haploid populations. Here,...
متن کاملFinite genome size can halt Muller's ratchet
We study the accumulation of delete-rious mutations in a haploid, asexually reproducing population, using analytical models and computer simulations. We find that Muller's ratchet can come to a halt in small populations as a consequence of a finite genome size only, in the complete absence of backward or compensatory mutations, epistasis, or recombination. The origin of this effect lies in the ...
متن کاملKick-starting the ratchet: the fate of mutators in an asexual population.
Muller's ratchet operates in asexual populations without intergenomic recombination. In this case, deleterious mutations will accumulate and population fitness will decline over time, possibly endangering the survival of the species. Mutator mutations, i.e., mutations that lead to an increased mutation rate, will play a special role for the behavior of the ratchet. First, they are part of the r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Theoretical population biology
دوره 73 1 شماره
صفحات -
تاریخ انتشار 2008